Effect of the green porous texture on porcelain tile properties

J.L. Amorós *, M.J. Orts, J. García-Ten, A. Gozalbo, E. Sánchez

Instituto de Tecnología Cerámica, Asociación de Investigación de las Industrias Cerámicas, Universitat Jaume I, Castellón, Spain

Received 8 March 2006; received in revised form 7 July 2006; accepted 15 July 2006
Available online 20 September 2006

Abstract

Porcelain tile is a product characterised by low water absorption (usually less than 0.1%) and excellent mechanical properties. To enhance tile aesthetic qualities, much of the porcelain tile production is polished to provide a high-gloss surface finish, in which certain closed pores in the tile body become visible. This apparent porosity of the polished tile, which had been closed porosity before polishing, sometimes lowers the product’s stain resistance.

Test pieces were formed from a porcelain tile composition prepared under different milling conditions, pressing variables being kept constant, and the pore size distribution of these pieces was determined. The effect of the porous texture of the green pieces on the evolution of porosity during sintering and on the residual porosity of the densified body was analysed. It was verified that the porous texture of the fired piece was conditioned by the porosity and size of the largest pores in the green piece. The effect of residual porosity on stain resistance was determined by two cleaning methods. The presence of large pores in the green body, stemming from insufficient milling of the raw materials mixture, led to tiles with greater residual porosity and worse stain resistance.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Porosity; Pressing; Sintering; Microstructure-final; Tiles; Porcelain

1. Introduction

Porcelain tile is a product with excellent technical characteristics (zero or almost zero apparent porosity, high mechanical strength and frost resistance, high hardness, chemical and stain resistance, etc.) with a broad spectrum of aesthetic possibilities (body colouring with soluble stains, pressed relief, polishing, glazing, etc.).¹ These technical and aesthetic features have made porcelain tile a popular product, whose production grows annually. Porcelain tile formulation is based on three major raw materials that contribute the necessary plasticity for green processing and the required degree of meltability to provide the end product with its desired properties. The major raw materials are white-firing clays, and sodium and sodium–potassium feldspars. Other raw materials, used in minor quantities, are silica and feldspar sands, kaolins, and potassium feldspars.

Porcelain tile technical characteristics are closely related to the porous texture of the fired product. Thus, porcelain tile’s high mechanical strength is the result of low true porosity. Its frost resistance stems from zero or almost zero apparent porosity. Porcelain tile stain resistance is also a consequence of low porosity and the fact that the closed pores that surface when the tile is polished are small and isolated, making it difficult for dirt to enter the pores.²⁻³ However, the surface roughness of the polished piece affects stain resistance; thus, stain resistance increases when the number of cracks, chips and other irregularities produced during polishing decreases.⁴⁻⁵

Fired porcelain tile porous texture is the result of the product’s green microstructure and appropriate heat treatment. Fig. 1 schematically depicts the evolution of porcelain tile porosity during firing in terms of apparent porosity (interconnected pores) and closed porosity (occluded pores). Optimum firing temperature is the temperature at which no apparent porosity remains and closed porosity has not yet started to increase. The optimum firing temperature for porcelain tile usually lies between 1190 and 1220 °C. The product’s porous texture at this temperature determines its technical properties.

Porcelain tile densification involves a liquid phase sintering process. During firing, at temperatures of about 900–1000 °C, an important quantity of liquid phase begins to form, surrounding
the particles and producing a process-driving capillary pressure \((P_c) \) at the contact points. The capillary pressure brings the particles closer together, increasing shrinkage and lowering porosity, while concurrently altering pore size and shape. Raising temperature increases the quantity of liquid phase and lowers porosity. In intermediate states, at around 1180°C, pores start closing as interpore connections are eliminated. The occluded pores contain air that exerts a pressure \((P_g) \) on the pore walls, opposing densification. In advanced process states, above 1200°C, occluded pore gas pressure is high and counteracts capillary pressure, making the product expand. The sintering rate of this type of material is found from:

\[
\frac{-d\varepsilon}{dt} = \frac{3}{4\eta_s}(P_c - P_g)
\]

where \(\varepsilon \) is porosity, \(\eta_s \) system effective viscosity, \(P_g \) occluded pore gas pressure and \(P_c \) is capillary pressure, which is given by \(P_c = -\frac{2\gamma}{r} \), where \(\gamma \) is surface tension and \(r \) is pore radius.

The study addresses the effect of green porcelain tile microstructure on the sintering process and on fired product properties.

2. Materials and procedure

A standard industrial porcelain tile composition has been used, consisting of 45 wt% white-firing clay, 40 wt% sodium feldspar and 15 wt% feldspathic sand. Four suspensions (R1–R4) were prepared by milling these compositions in a planetary ball mill for different times, in each case determining the residue on a 40μm screen. Fig. 2 presents the corresponding particle size distributions, determined by laser diffraction. Raising the degree of milling is observed to reduce the coarse particle fraction, without altering the fine particles (clayey mineral). This yields narrower particle size distributions, producing more porous packings.

The suspensions were spray dried and disk-shaped test specimens were pressed from the resulting material. The following standard industrial porcelain tile pressing conditions were used: pressing powder moisture content of 0.055 kg water/kg dry solid and pressing pressure of 45 MPa. The test specimens were dried at 110°C to constant weight. Specimen dimensions and bulk density were then determined by the mercury displacement method. The pieces were fired in an electric laboratory kiln at different peak temperatures, ranging from 1000 to 1260°C. The heating rate was 25°C/min, with a 6 min hold at peak temperature. Firing shrinkage (LS) and bulk density (\(\rho_c \)) of the pieces were determined by the mercury displacement method. Apparent porosity, measured as water absorption (WA) according to standard UNE-EN ISO 10545-3, was also determined.

Specimen porous texture was characterised by measuring bulk density, absolute density, water absorption, and determining pore size distribution (PSD) by mercury porosimetry in the pieces with a large apparent pore fraction, i.e. in the green specimens and in the specimens fired at peak temperatures up to 1175°C.

Absolute density was determined in a Quantachrome Ultrapycnometer 1000 helium pycnometer. True porosity was obtained from the bulk density and absolute density data. Mercury porosimetry was performed in a Micromeritics AutoPore III. Sample weight was about 2 g and a 130° contact angle was taken.

The PSDs were fitted to log-normal distributions. The value of \(d_{16} \) was considered representative of the coarse pore fraction in the distribution, since previous studies had shown that the changes in porous texture during densification were better characterised by the evolution of this parameter than by that of total pore volume or by the average value of the distribution. The value corresponds to the diameter above which 16% of total pore volume is found. This parameter corresponds to the statistical value of the average plus the standard deviation of the normal distribution.

To determine the effect of fired specimen porous texture on stain resistance, the pieces were polished using diamond abrasive to size 3μm. The polished surfaces were observed in an optical microscope with the bright field signal (BF).
The CIEL*a*b* chromatic coordinates were determined on the polished specimens with a diffuse reflectance spectrophotometer, using a CIE 10° standard observer and CIE type D65 standard illuminant. One millilitre rhodamine solution at 0.1 g/L (red dye that simulates wine stains) was deposited on the polished surfaces for a contact time of 30 min. The stained surfaces were then cleaned by two methods:

(a) with a cloth dampened with water;
(b) rubbing the specimen surface with a cloth impregnated with a cleaning agent, at a set pressure, with a constantly rotating mechanical device (180 rpm). The cleaning agent was a commercial bleach at a concentration of 35 g Cl2/L. The application pressure was 0.8 kg/cm² (equivalent to strong manual pressure) and application time was 1 min.

L*a*b* chromatic coordinates were measured again in the initially measured area, after applying the above cleaning methods.

Cleanability and stain retention were assessed as the difference in colour ΔE^* of the polished specimen before staining and after cleaning from the following equation:

$$\Delta E^* = \sqrt{(L_0^*-L^*)^2 + (a_0^*-a^*)^2 + (b_0^*-b^*)^2}$$

where $L_0^*a_0^*b_0^*$ are specimen chromatic coordinates before staining and $L^*a^*b^*$ are its chromatic coordinates after cleaning.

Dirt retention was evaluated as the ΔE^* of the specimen before applying rhodamine and after cleaning the surface with a cloth dampened with water.

Cleanability was assessed as ΔE^* of the specimen before applying rhodamine and after cleaning the stained surface by the (b) procedure. The larger the value of ΔE^*, the harder it is to clean the specimen.

3. Results

3.1. Green microstructure

Table 1 details the residue data of the mixtures on a 40 μm screen, together with the dry bulk densities of the pressed test specimens (ρ_s).

Fig. 3 plots the pore size distributions of the four prepared mixtures. The R3 and R4 curves are shifted towards the right, i.e. the specimens have larger pores than the longer milled mixtures (R1 and R2). R3 and R4 are observed to be less porous (smaller area under the curve). These results are consistent with the bulk density data obtained.

It can be inferred from the curves in Fig. 3 and the bulk density data (Table 1) that at the same pressing variables, the larger the composition coarse particle fraction (higher residue on 40 μm or shorter milling), the less porous (higher bulk density) are the resulting specimens, which, however, contain larger pores. In contrast, with longer milling (R1 and R2) the resulting specimens are more porous (lower dry bulk density), but the pores are smaller.

These outcomes are in agreement with the literature and confirm that particle size is directly related to pore size in the green packing.

3.2. Evolution of specimen microstructure with firing temperature

In order to analyse the evolution of porosity in the pieces with firing temperature, composition R1 was selected, which exhibited a residue on 40 μm similar to that of the compositions used in industry to make porcelain tile. Fig. 4 plots the pore size

Table 1

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Milling time (min)</th>
<th>Residue on 40 μm (wt%)</th>
<th>ρ_s (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>30</td>
<td>1.6 ± 0.2</td>
<td>1885 ± 4</td>
</tr>
<tr>
<td>R2</td>
<td>26</td>
<td>2.6 ± 0.2</td>
<td>1903 ± 5</td>
</tr>
<tr>
<td>R3</td>
<td>16</td>
<td>6.1 ± 0.3</td>
<td>1934 ± 3</td>
</tr>
<tr>
<td>R4</td>
<td>10</td>
<td>11.7 ± 0.5</td>
<td>1962 ± 2</td>
</tr>
</tbody>
</table>

Fig. 4. Pore size distribution of the R1 series of specimens.
distributions of the R1 series, comprising the green specimen and
the specimens fired at different temperatures. Specimen apparent
porosity (ε_A) and true porosity (ε) are given in Table 2.

Table 2 and Fig. 4 show that, for the R1 series, raising fir-
ing temperature reduces porosity, while the curves progressively
shift towards larger pore sizes, i.e. pores grow owing to progres-
sive elimination of the smallest pores. Porosity of the specimens
fired at 1000 and 1050 $^\circ$C is larger than that of the green speci-
men as a result of clay mineral decomposition, which increases
porosity at 500–700 $^\circ$C. The other compositions display a simi-
lar evolution.

Pore growth with temperature in incipient densification
states, when liquid phase forms, has been observed in clayey
compositions6 and glassy materials.14,15 In these materials with
an initial broad pore size distribution, the formation of liquid
phase eliminates the smaller pores, leading to particle rearrange-
ment with the ensuing differential shrinkage of the material and
growth of the larger pores.16–18 This coarsening is the result of
heterogeneous pore sizes in the green packing.

As temperature rises a greater amount of liquid phase is pro-
duced and liquid-phase viscosity decreases. This enables elimi-
nating larger pores, increasing shrinkage and lowering apparent
and true porosity, while the remaining pores grow. The initially
interconnected porous system progressively loses connectivity
as sintering advances and pores start closing.

At 1200 $^\circ$C apparent porosity is cancelled and the evolution of
the porous texture needs to be monitored by examining polished
specimen cross-sections. Fig. 5 shows that raising temperature
lowers specimen porosity further until maximum densification
is reached, in this case at 1220 $^\circ$C. A subsequent rise in tem-
perature then lowers effective viscosity, making the specimen
more deformable and raising occluded pore gas pressure above
capillary pressure, so that the specimen expands. The optimum
firing temperature for this type of product is maximum densifica-
tion temperature (T_{max}). The starting composition formulation
needs to make this temperature higher than the temperature that
cancels apparent porosity, otherwise the fired product will have
open pores, as is the case of group BIb floor tiles, defined in
standard ISO 13006.

3.3. Effect of green microstructure on the evolution of
porous texture during firing and on fired product properties

Fig. 6 plots the pore size distributions of the four series of test
specimens fired at 1175 $^\circ$C. Table 3 lists the bulk density data.

At intermediate sintering states, in which an important frac-
tion of the initial porosity has been eliminated, the longest
milled mixture (R1), which was the most porous green speci-
men, has densified most. This is essentially because the aris-
ing liquid phase sequentially eliminates pores by size. Hence,
even when starting at higher porosity, if the pores are smaller,
they will be eliminated at lower temperatures. Moreover, the
apparent pores that remain at 1175 $^\circ$C (Fig. 6) are smaller for
mixture R1.

<table>
<thead>
<tr>
<th>T ($^\circ$C)</th>
<th>Green</th>
<th>1000</th>
<th>1050</th>
<th>1100</th>
<th>1150</th>
<th>1175</th>
<th>1200</th>
<th>1220</th>
<th>1240</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0.289±0.005</td>
<td>0.302±0.007</td>
<td>0.297±0.007</td>
<td>0.281±0.006</td>
<td>0.226±0.009</td>
<td>0.153±0.008</td>
<td>0.103±0.007</td>
<td>0.100±0.005</td>
<td>0.111±0.006</td>
</tr>
<tr>
<td>ε_A</td>
<td>0.289±0.005</td>
<td>0.280±0.015</td>
<td>0.267±0.015</td>
<td>0.249±0.013</td>
<td>0.198±0.014</td>
<td>0.147±0.013</td>
<td>0.099±0.012</td>
<td>0.000±0.0010</td>
<td>0.000±0.0010</td>
</tr>
</tbody>
</table>

True porosity (ε) and apparent porosity (ε_A).
These findings explain why highly milled mixtures are used industrially to produce porcelain tiles. Thus, starting packings that contain small pores allow most of these pores to be eliminated during firing, yielding highly densified products.

To analyse the effect of green microstructure on pore growth during sintering, the values of d_{16} (statistical parameter selected as representative of the large pores) versus degree of densification, expressed as percentage eliminated porosity ($\varepsilon_0 - \varepsilon$)/$\varepsilon_0$, where ε_0 is green porosity and ε is fired porosity, have been plotted in Fig. 7. Raising the degree of densification causes the coarsest pores to grow. The greater the initial particle packing heterogeneity, i.e. when the green body contains larger pores – the case of the less milled mixtures (R4) – the higher is the pore growth rate (curve slope).

The results obtained confirm that pore size growth during sintering depends on pore size in the green body, so that fired product porosity (Table 3) will depend more on pore size than on pore volume of the green body.

Fig. 8 plots bulk density and apparent porosity, expressed as water absorption, versus firing temperature for the four studied compositions. The plots correspond to the last stretch of intermediate- and final-stage sintering. The greater the degree of milling, the higher is the specimen’s maximum apparent density and the lower is the temperature at which this is attained (T_{max}). The vitrification temperature (T_v) or temperature at which apparent porosity is cancelled is also lower in this case.

Fig. 9 shows the appearance of the porous texture of the specimens fired at maximum densification temperature (T_{max}) and subsequently polished. It can be observed that as the residue on 40 μm increases (decreasing degree of milling) fired specimen pores become larger. These findings match the data presented in

<table>
<thead>
<tr>
<th>Specimen</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_c (kg/m3)</td>
<td>2305±8</td>
<td>2282±9</td>
<td>2235±10</td>
<td>2206±9</td>
</tr>
</tbody>
</table>

Figs. 4 and 7. Once again the results highlight the importance of the green porous texture on the characteristics of the fired product, particularly when this is polished. Polishing causes some of the initially closed pores in the product to surface. It is therefore important to have few pores and for these to be small to keep dirt from entering.

Fig. 10 plots maximum densification temperature (T_{max}) and vitrification temperature (T_v) versus degree of milling, expressed as residue on 40 μm, which is the parameter used industrially to control this process stage. As in Fig. 8, both T_{max} and T_v increase with the residue, i.e. they decrease when the degree of milling rises. T_{max} and T_v coincide for a residue of 4.2%. At higher degrees of milling (i.e. below 4.2%), vitrification temperature is lower than maximum densification temperature. This indicates that the fired product will have no apparent porosity and that the degree of milling will only affect the polished product as set out above. However, at lower degrees of milling (residue exceeding...
4.2%), T_{max} is lower than T_v so that products will exhibit apparent porosity at maximum densification even without polishing.

To analyse the relation between porous texture after polishing and stain resistance, Fig. 11 plots cleanability and dirt retention versus firing temperature of the specimens made with the longest milled mixture (R1). Dirt retention decreases when firing temperature is raised, and presents a minimum at T_{max}. This initial decrease is due to the reduction in specimen porosity, while the rise at $T>T_{\text{max}}$ is caused by specimen bloating, owing to occluded pore gas pressure, as indicated above.

With regard to cleanability, ΔE^* decreases (cleanability increases) up to T_{max} and is held at higher temperatures in the studied range for this variable. ΔE^* does not decrease above T_{max} because when the body expands, porosity increases as a result of rising pore size and not because of greater pore number, while dirt can be more readily removed from large pores than from small ones.

Fig. 9. Polished cross-sections (BF images) of specimens fired at T_{max}.

Fig. 10. Evolution of maximum densification (T_{max}) and vitrification temperature (T_v) with degree of milling.

Fig. 11. R1 composition. Variation of dirt retention and cleanability with firing temperature in polished specimens.

Fig. 12. Variation of dirt retention and cleanability with degree of milling in specimens fired at T_{max} and polished.
To confirm the effect of green microstructure on the porous texture of polished specimens, Fig. 12 plots dirt retention and cleanability of the specimens prepared with the four mixtures and fired at T_{max} versus degree of milling. Dirt retention increases and cleanability diminishes as degree of milling decreases (rising residue on 40 μm). The least milled mixtures are not only the most porous, but they also contain the largest pores, again confirming the enormous importance of green porous texture on end product properties, particularly when the product is to be polished.

4. Conclusions

The study shows that an insufficient degree of milling in porcelain tile compositions produces green bodies with a wide pore size distribution, containing large pores, even when the green bodies are more compact than ones made with longer milled compositions, under the same pressing conditions.

The presence of large pores in the green body hinders the sintering process, and requires a higher firing temperature to reach maximum product densification. Moreover, the minimum attainable porosity is higher and the size of the remaining pores increases. The negative effect of this porosity appears mainly as worse stain resistance of the polished product.

Fired porcelain tile porous structure is shown to be determined by the microstructure of the green body. The results explain why highly milled mixtures are used industrially to produce this type of product.

References